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Hybrid Near-Optimal Aeroassisted Orbit Transfer Plane Change

Trajectories

Gregory A. Dukeman* and Anthony J. Calise**

In this paper, a hybrid methodology is used to determine optimal open loop controls for the
atmospheric portion of the aeroassisted plane change problem. The method is hybrid in the
sense that it combines the features of numerical collocation with the analytically tractable

portions of the problem which result when the two-point boundary value problem is cast in
the form of a regular perturbation problem. Various levels of approximation are introduced
by eliminating particular collocation parameters and their effect upon problem complexity
and required number of nodes is discussed. The results include plane changes of 10, 20,
and 30 degrees for a given vehicle.

Introduction

This paper is an extension of [5]. It is well-known that aeroassisted orbit changes

require significantly less fuel than all-propulsive maneuvers. In particular, the orbital plane

change is very costly in terms of fuel. In order to realize the potential savings afforded by

aeroassist it is important to develop computationaUy efficient and reliable algorithms

suitable for computing near-optimal trajectories in real-time. Exact solutions are typically

too computationally intensive to compute onboard. On the other hand, approximate

analytical solutions often result in too great of a loss in optimality or generality to be of any

use.

The present method combines the desirable features of both analytical methods and

numerical methods. The two-point boundary value problem resulting from the optimal

control problem is first cast as a regular perturbation problem by artificially introducing

small parameters and adjustable collocation parameters into the state/costate system. The

trajectory is then divided into a finite number of intervals wherein the solution is

approximated by the analytical zeroth order solution of the regular perturbation problem.

Recently, numerous approximate methods have been used to compute near-optimal

controls for aeroassisted transfer [1-3]. These approximations have assumed that

Keplerian effects are small. The Keplerian effects are treated by assuming that Loh's term
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is constant or piecewise constant [2]. Altematively, the problem can be treated as a regular

perturbation of the control solution [1]. In [4] it is shown that the problem is a singularly

perturbed problem and that the Keplerian effects can be treated by matching a zero-order

outer solution with the zero-order solution in [1] .

Eouations of Motion

The equations of motion for a particle of mass m about a spherical non rotating

planet are

_ = Vsin)'

I)- D gsin)'
m

- cos),)'= mV V r

IV= L sin// V cos)'cos _tan 0
mV cos y r

= V cos)' sin _g
r

0 = V cos)'cos _,
r cos

(1)

where the dot denotes derivatives with respect to the independent variable t, r is the distance

from the center of mass of the planet to the point mass, V is the speed, )'is the flight path

angle, Ig is the heading angle, _ is the cross range angle, 0 is the downrange angle,/.t is

the bank angle, and g is the local gravitational acceleration in an inverse square field. The

atmospheric density p is modeled by

r-- r s )

p = p,e- -T- (2)

where p, is a reference density, r, is the reference radius, and fl is the scale height. The

aerodynamic forces are given by



L = lpV2SQ

D = 2PV2SCD

C o = Coo + KC 2

(3)

where L is the lift force, D is the drag force, CL is the lift coefficient, C O is the drag

coefficient, Coo is the drag coefficient at zero lift, S is the aerodynamic reference area, and

K is a constant.

To facilitate analysis, these equations are modified through several transformations

and assumptions as in [1]. First, introduce non-dimensional variables defined by
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where w and v are the non dimensional variables related to altitude and velocity,

respectively, and _, is the normalized lift coefficient. E* denotes the maximum lift-to-drag

ratio, and C_ and C0 are given by

C o = 2Coo = 2KC*L2 (5)

The new controls tr and 6 are the local vertical and local horizontal components of

normalized lift.

Under various assumptions made in [2] and [6] cross range and downrange

become ignorable coordinates so that the resulting equations of motion are •
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where the prime denotes derivatives with respect to a new independent variable z. The

change in inclination is approximated by the change in heading.

Ootimai Control Formulation

The associated optimal control problem is to minimize the energy loss, or

equivalently, to maximize the final velocity subject to the equations of motion, specified

initial conditions, and specified terminal values of altitude, flight path angle, and heading.

The Hamiltonian H for this problem is given by

(7)

The optimality conditions H a = 0, H_ = 0,can be solved for the controls in terms of the

costates

t_- E*';t r E*A_,tr = _ (8)
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Hybrid Solution: Zero-Order Aaoroximation with Collocation

As in [5], we divide the trajectory into N intervals, introduce a "small" parameter e,

introduce collocation parameters p's and q's and write the state/costate system for interval j as:
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(9)

for all z _ [zj_ 1,zj], and H is the Hamiltonian. Note that for the case e = 0 the system of

differential equations (9) has an analytical solution (see the Appendix) which allows any of

the states or costates to be computed in any given interval as functions of the collocation

parameters for that interval, the quantity z - zj__, and the state/costate values at the

beginning of the interval. This analytic solution provides the interpolating functions in the

collocation method. The terms in (9) that are multiplied by e serve as "defect" equations,

i.e., the p's and q's are determined such that these terms are zero at the midpoint of each

interval. In this way, the p's and q's in the interpolating functions account for the parts of

the state/costate system that are not analytically tractable. Note that if e is set to a nominal

value of unity, then the original state/costate system is recovered. Therefore, as the number

of elements N becomes large, the hybrid solution approaches the exact solution.

The optimal control problem has been reduced to a problem in nonlinear equation

solving. Five defect equations exist per interval for computing the five collocation

parameters per interval and the unknown initial costates and final time can be solved for by

enforcing the specified and natural boundary conditions that arise from optinaal control

theory. Instead of solving for unknown final time, the trajectory can be divided into

intervals in the heading angle, the final value of which is specified. In all, there are 5N + 4

equations and 5N + 4 unknowns. In the next section, numerical results are shown which

compare solutions obtained using three different sets of interpolating functions: the first set

is obtained from neglecting the analytically intractable part of the nu dot and lambda-nu dot

equations thus eliminating the p_ and q_ collocation parameters in the interpolation



functions.Similarly, thesecondandthird setsof interpolatingfunctionsareobtainedfrom

neglectingtheanalyticallyintractablepartsof thenudotandlambda-nudotequations

respectively.The first set results in a constant lambda-nu whereas the second set results in

a piecewise linear lambda-nu history; thus reference will be made later to the constant

lambda-nu and linear lambda-nu formulations respectively. The third set will be referred to

as the precise nu formulation.

Numerical Results

The methodology described above is used here to compute near-optimal open loop

controls for the vehicle described in [3] while executing a plane change maneuver. The

physical constants are K=1.4, Coo = 0.032,S = 11.69m 2, and m = 4898.7 kg. The

modeling parameters are the scale height fl = 8251.585 m, reference radius

r s = 6.433375E6 m, reference density ps = 5.6075E - 4 kg / m 3, and the gravitational

constant _- = 3.98603E14 m 3 / s2. Initial conditions are altitude Hi = 60 km, Vi = 7850.88

m/s, ?'; = -1.346 deg, and IVi = 0 deg. Final conditions are Hf = 60 km,

)'I = 1.0 deg, and IVs = 20 deg. The numerical results presented here are for the three

different formulations (i.e., three different sets of interpolating functions) discussed above

with varying numbers of nodes and varying plane change angles.
Figures 1 through 5 show state and control histories corresponding to trajectories

generated using eight equally spaced nodes. Trajectories corresponding to plane change
angles of 10, 20 and 30 degrees were computed. The only noticeable differences between
the three trajectories for a given plane change is in the altitude histories. The trajectory
resulting from the linear lambda-nu formulation penetrates slightly deeper into the
atmosphere than either the constant lambda-nu formulation or the precise nu formulation.
The precise nu formulation trajectories are indistinguishable from the constant lambda-nu

formulation trajectories.

Exit speeds for various combinations of formulation, plane change and number of

elements are presented in Tables 1 and 2. For N = 8 elements and a plane change of 20

degrees, the exit speed corresponding to the constant lambda-nu trajectory is 6737 m/s

compared with 6738 m/s for the piece wise linear lambda-nu trajectory. The difference in

performance between these two formulations is very small and certainly does not justify the

relatively complex interpolating functions for the case of linear lambda-nu.

Figure 6 compares altitude histories generated using different numbers of nodes.

The closeness of these histories suggests that 6 equally spaced elements provide sufficient

accuracy for trajectory generation. An attempt was made to use just four equally spaced

elements but the resulting trajectory was physically unrealistic, e.g., the speed increased

monotonically in the atmosphere. This is due to the nature of the methodology used here.

The differential equations are only enforced at the midpoints of the elements so that if an



insufficientnumberof elements is used physically unrealistic trajectories result. In [5]

nonuniform spacing of the nodes was used to generate accurate trajectories with only four

elements.

Discussion

The linear lambda-nu formulation does not significantly improve the performance or

accuracy of the generated trajectories. Thus, it is apparently unnecessary to use the

complicated interpolating functions that result from the linear lambda-nu formulation.

These functions contain logarithms which make the nonlinear problem harder to solve

numerically. For the constant lambda-nu formulation (as well as the precise nu

formulation), the interpolating functions degenerate into simple polynomials [5].

The precise nu formulation trajectories are virtually identical to the constant lambda-

nu formulation trajectories. However, there is a noticeable difference in the exit speeds

which may or may not be acceptable depending upon the application. If one were to use

the constant lambda-nu formulation in the form of a closed loop guidance scheme, the

difference in exit speed of the guided trajectories may very well be negligible as compared

to using the precise nu formulation as a closed loop guidance scheme. The controls

histories represented by bank angle and normalized lift coefficient for a typical trajectory

differ by no more than 0.1 deg and 0.005 respectively. Regarding complexity, the constant

lambda-nu formulation involves 3N+4 (N is the number of elements used) problem

variables as compared to 4N+4 problem variables for the precise nu formulation. For N =

6, this gives 22 and 28 problem variables respectively. The interpolating functions are

identical except for an additional linear term in the precise nu formulation.

Conclusions

Zero-order analytic solutions to various levels of approximation of the aeroassisted

optimal plane change problem have been obtained for use as interpolating functions in a

collocation method. The simplest formulation, whrerein a constant lambda-nu is assumed,

is shown to provide sufficient accuracy in determining near-optimal open-loop controls and

by nature of its simplicity has potential for use as a closed loop guidance scheme. The

hybrid methodology used here to develop intelligent interpolating functions allows accurate

trajectory generation with only a small number of equally spaced nodes in the collocation



method.Furtherwork couldbedoneusingthehybridmethodologyto solvethemore

realisticproblemsof heatingor loadconstrainedaeroassistedplanechangemaneuvers.



References

1. Speyer, J.L., and Crues, E.Z., "Approximate Atmospheric Guidance Law for

Aeroassisted Plane Change Maneuvers," Joumal of Guidance, Control, and Dynamics,

Vol. 13, No. 5, 1990, pp.792-802.

2. Hull, D.G., Giltner, J.M., Speyer, J.L., and Mapar, J., "Minimum Energy-Loss

Guidance for Aeroassisted Orbital Plane Change," Journal of Guidance, Control, and

Dynamics, Vol. 8, No.4, 1985, pp.487-493.

3. Hull, D.G., and Speyer, J.L., "Optimal Re-entry and Plane Change Trajectories,"

Joumal of the Astronautical Sciences, VoI.XXX, 1982, pp. 117-130.

4. Calise, A.J., and Melamed, N., "Optimal Guidance of Aero-assisted Transfer Vehicles

Based on Matched Asymptotic Expansions," Proceedings of the AIAA Guidance,

Navigation, and Control Conference, Vol. 2, AIAA, Washington, DC., 1991, pp. 1048-

1058.

5. McFarland, M., Calise, A., "A Hybrid Approach to Near-Optimal Atmospheric

Guidance for Aeroassisted Orbit Transfer Maneuvers," AIAA Guidance, Navigation and

Control Conf., Paper No. 93-3858, Monterey, CA, Aug 9-11, 1993, pp 1423-1430.

6. Mease, K.D., Lee, J.Y., and Vinh, N.X., "Orbital Change During Hypersonic

Aerocruise," Joumal of the Astronautical Sciences, Vol. 36, Nos. 1/2, 1988, pp. 103-137.



Figures (In the legends FI_N8 denotesformulation 1, 8 elements.Formulation
1 is the constant lambda-nu formulation, formulation 2 is the linear lambda-
nu formulation, formulation 3 is the precise nu formulation)
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Figure 1: altitude vs heading angle
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Figure 4: normalized lift coefficient vs

heading angle
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Figure 2: speed vs heading angle
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Figure 5: bank angle vs heading angle
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Figure 3: flight path vs heading angle
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Figure 6: altitude vs heading for
varying numbers of elements



Table 1.

angles.

plane change,

deg

Exit Speeds for varying formulation and plane change

constant linear lambda- precise nu

lambda-nu nu formulation formulation,

formulation exit exit speed, m/s exit speed, m/s

speed, m/s

10 7259.4 7260.1 7258.2

20 6737.0 6738.0 6733.2

30 6244.7 not calculated 6236.1

Table 2. Exit speeds for varying numbers of elements. Constant

lambda-nu formulation, 20 degree plane change

number of elements exit speed, m/s

6 6738.2

8 6737.0

12 6736.7
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The hybrid formulation of (9) gives rise to the following nonlinear interpolating
functions.

/_,(z) = A,,,_,

Aw(z) = qwAZ + Aw,_,

Av(z) = qvjAz + A_j_,

:tr(z) = _(Az)2 + (2,,_, + qr_)Az + 2rj_,

IV(z)- E*t_j_, [ln(-q_ Az- A._, ,)- ln(-/q._j, )]
2qvj - -

y(z) = qwE" (Az) 2 + pr + -
8q_j 4q_j

E* [2q: At,_,_2q_ a_,_Aw,_,_2A,,,,q,,,qr'+ A,_,_,qw][in(_qvAz_/_, ,)-In(-A_,, ,]+ y:_,
4q3j - ._ _

w(z)= q,.E* (Az)3 + -½Pr, - 2

24q_j 4qvj

4qv t _ " -

E'A%-'A[1-1n(-q'Az-4q_ Z _,-1) +ln(-X_,, )]+ wJ-1-

v(z) = B(z) - B(zj_ l ) + vi_ 1

[ ]where j = 1...N, Az = (z -zj_l), andz _ zj_l,z _ .

A is given by:

a = 2q2vj_rj_. - 2q_jA_,_ A._,_. - 2,Tl.,,mq,#qr, + _j_.q.,

and B(z) is given by:
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